SMALL OSCILLATIONS OF A GAS-FILLED SPHERICAL
CHAMBER IN VISCOELASTIC POLYMER MEDIA
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A number of special features are characteristic for the mechanical behavior of polymer ma-~
terials; on the phenomenological level they find their description within the framework of
complicated continuous models [1-3]. Among those special features there are various kinds
of viscoelasticity which must be taken into account when analyzing the flow and deformation
of polymers. In the present article small oscillations are investigated of a gas-filled spher-
ical chamber in a viscoelastic polymer medium described by a rheological equation with
eight constants [3]. An exact solution is obtained of the equation of small oscillations of the
chamber, the effect being studied of the rheological parameters of the medium on the oscil~
lations. The analyzed problem is of particular interest in connection with the problems of
acoustic cavitation in aqueous solutions of polymers [4-6].

The rheological equation with eight constants [3] which is used to describe the mechanical behavior
of a number of polymer media is given by
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In the above pjk, ejk, and wjk are the stress tensor, tensor of the deformationrates,and the whirl ten-
sor respectively; p is the isotropic pressure; vi are the projections of the velocity vector on the coordinate
axes Xj; Ay Ags Po» Ps Pas Tge Vg» ¥ are the rheological constants; D/D¢ is the Jauman derivative.

Small radial oscillations are considered of a gas-filled spherical chamber of radius R immersed in
an unbounded incompressible viscoelastic medium (1) with density p. Spherical coordinates r, 8, ¢ are in-
troduced with the origin at the center of the chamber. Assuming that the flow has gpherical symmetry one
finds from the continuity equation
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the equations

vr = R®Rr-%, R =dR:dt 3)
The projection on the r axis of the equation of motion of the continuous medium in terms of stresses
is
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In the above one has taken into account that Tee = 76 holds by virtue of the previously assumed sym-
metry. Integ;‘ating Eq. () with respect to r from R to «, using Eg. (3) and proceeding to another variable
y =1/3 (x*=R?), the equation of motion is obtained of the boundary of the chamber, namely

T

p(RR + 3,18%) = p(R) — p (o) + Tpr (20) — Ty (R) +1-2 hdl/ (5)
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In Eq. (5) Trr(R), p(R) and Typ(«), p(x) denote the stress and pressure on the surface of the chamber
or at infinity.

For p(R) [4) one has the following boundary condition:
p(R) = py () — 20R" 4 1,, (R), P, (R) = pyo (RR)* (6)

where py(R) and p;, are pressures of gas inside the chamber at any time instant and at the initial instant re~
spectively, Ry is the initial radius of the chamber, ¢ is the coefficient of surface tension, k is the index of
the polytropic curve. The quantity pjycanbefound from the equilibrium condition for the chamber under
pressure p, at the initial instant,

Pro = Pw - 20R,71 (7)

The equations for Tpy and Ty are now written down. By substituting Eg. (3) in Eg. (1) and changing to
the variable y one obtains
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The quantity p(e) is represented as
P (00) = pw — po sin ot (9)

where py/ps, <<1. Under periodical pressure small radial oscillations close to the equilibrium position be-
gin to appear in the chamber. By setting R = Ry+ AR, where /R denotes a small deviation from the quantity
Ry, Egs. (5) and (8) become linearized. This yields the following system of linear equations for the unknowns
AR and Tpy:
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The initial conditions are given by

AR =d(AR)/dt=1,=0 fo t=0

The system (10) and (11) can be solved by using operational calculus [7]. By taking the Laplace trans-
forms of the equations one obtains an equation for the transform of AR,

AR* =y (M 4 ) (8 -+ 08 (s — 1) (s — ) (s — s)l ™7 (12)
In the above 8 is the complex Laplace-transformation variable; sy, S;, 83 are roots of the cubic equa-
tion
$ 4 as®+ bs + ¢ =
a = i1+ 20k, 7Y, b =P 200, c=ph?
a = 2no (PR, v = pew (0Ry)™
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B =3k [pw -+ 20R,™T (1 — (3k)™)] (pR¢%)™? (13)
Using Cardan's formulas one can write the solutions of Eq. (13) as

ss=A-+B—al3, sp3=—1(4+B) +iV3d—B)/
/2 —al3

A=y —u2+V0, B=y —u2—Vq, Q=(8/3+(u/2y (14)

u=2(a/3°—ab/3+4¢, v=—-la>+ b

Applying now the inverse Laplace transformation to the relation (12) one finds an expression for AR.
The following three cases take place depending on the sign of Q.

1. Q>0. Equation (13) has only one real root (s,) and two complex~-conjugate roots (s, and s3). By
representing the s, 3 in the form s, 3 = 6+iu, one obtains
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2. Q@ =0. Equation (13) possesses three real roots, two of them being the same. The formula for
AR now becomes
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3. @< 0. Equation (13) possesses three different real roots. In this case one has
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The relations (15)-(17) represent all possible solutions to our problem. It is not difficult to find that
in all three cases one has Re{si} =0 (i =1, 2, 3). Therefore if t —~ = the term yw D sin (wt+ay) is the only
one left in the formulas (15)-(17), and describes the forced oscillations of the chamber with frequency w.
The amplitude of the oscillation is given by the quantity D.

Two limiting cases, A;—0 and \; —~ « are now studied in detail.

For Ay = 0 Eq. (11) describes a fluid which needs some time to get into motion produced by a suddenly
applied force [8]. The condition Q > 0 for such a medium indicates that g(1.+2a)) > . The formula (15)
now becomes

AR = yM (07 1sin (0t - §;) + x-le 9t sin (xf 5 Pyl

M — lato? 4 (B — w2, ¢ —az7!, z=1- 2ak,
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The resonance frequency wp is now determined from the extremality of the amplitude M. One obtains

op =z (fz — 2a?) (19)

The resonance is only observed if 8z > 20%. In the case a? < 8z =202 the maximal amplitude occurs
formally for w = 0. One now investigates the effect of retardation time A, on the oscillations. For A, = 0 the
formula (19) gives an expression for the resonance frequency wp’ in & Newtonian fluid. If the inequality 8 >
40? is true, then for any Ay # Owp < wp® and for A; increasing, the resonance frequency decreases monoton-
ically. If, however, 8 <402, then for ), increasing from 0 to (20)"1@e?8~1~1), the quantity wp increases from
wp® to 1/4/2B8a "1, and then it again declines monotonically to zero. In the resonance case the oscillation
amplitude is My = (2a¥)~L. With ), increasing the quantity Mp increases. The damping coefficient is de~
termined by &¢; it declines with A, increasing. It is noted that the damping coefficient in a viscoelastic fluid
is always smaller than in a Newtonian fluid. Finally, it follows from Eg. (18) that with A, increasing the
frequency of the eigenoscillations of the chamber is reduced; the phase shift between chamber oscillations
increases as well as the pressure at infinity.

In the case of Q = 0, proceeding to the limit for A;—0 in the formula (16) results in
AR == yz (a® - %21 [0 Isin (0t -i- P;) 4 te8' 4 2az (a? 4 02)-les'], tg s = 2amz (02?2 — a?)-! (20)

It follows from Eq. (20) that for a given frequency w the maximal amplitude of the chamber-forced os-
cillations takes place in the medium for A, = (20) "} @w t=1). If aw~1=1, the oscillation amplitude depends
monotonically on the parameter Ay; the amplitude is then maximal if Ay = 0, that is, for a Newtonian fluid.

By proceeding to the limit in the formula (17) with A;—0 one obtains an expression for »R in the case
of Q< 0, namely

AR = 30 1M sin (0 - ;) + Ygp (62 — B2) e e+
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Since for Q < 0 the condition A; = 0 takes the form Bz < o?, the formula (19) cannot be employed for the
resonance frequency. The maximal amplitude takes place formally for w=0.

The second limiting case is now considered. With A; and 7, tending to infinity one assumes also that
1y/A—G. Then Eqg. (11) describes an incompressible viscoelastic body of the Voigt model [9]. The condi-
tion Q > 0 now becomes B+ 2E > M2EZ, where E = 2G(pRy®)~1. From the relation (15) one finds that

AR = yN o1 sin (0t + @) + g le™™! sin (gt + ¢,)]

N = lhotn? i (d — 0?2, d = B+ 2B, ny = hE 22)
» 2 2
g ={d —n?% tge :m:)%d, tg%:?ﬁt:—ﬁm
The oscillations determined by the formula (22) become resonance oscillations for wp = (d—2n.3)1/2

The resonance amplitude is Np = (2n;q)~L With », increasing the values of wp and Np decline. The damping
coefficient which is determined by the value of ny is proportional to A. It is also noticed that for A, increas-
ing the phase shift grows between the chamber oscillations and the pressure at infinity., For X, = 0 the for-
mulas (22) describe the small oscillations of a gas-filled chamber in an incompressible elastic body.

In the case of @ = 0 one finds from Eq. (16) that for a Voigt medium

AR = 3 (@ + n) Lot sin (0t + gg) -+ te -+ 2m (g -f 0f)7le]
tg 3 = 2on (0 — )t 23)
The effect of A, can be directly observed. '
Finally, a formula for AR is now introduced for a Voigt medium in the case of Q< 0:
AR = yo ! N sin (ot + @) + Yyy (n? — &)~ [(ng® + (24)

o) lemt — (n,? 4 @) le ], nyg =n + (n? — d)'
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In conclusion, it should be pointed out that one should set ¢ = 0 when using the relations (22)-(24).
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